South East Asian J. of Mathematics and Mathematical Sciences Vol. 21, No. 2 (2025), pp. 137-144

ISSN (Print): 0972-7752

ON FUZZY GENERALIZED PREOPEN SETS

A. Swaminathan and Margaret Sheela*

Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu - 612002, INDIA

E-mail: asnathanway@gmail.com

*Department of Mathematics Annamalai University, Annamalainagar, Tamil Nadu - 608002, INDIA

E-mail: mshee1836@gmail.com

(Received: Mar. 12, 2025 Accepted: Aug. 24, 2025 Published: Aug. 30, 2025)

Abstract: We aim to show in this paper that fuzzy μ -preopen sets of a GFTS or fuzzy μ -space X may be equivalent to fuzzy μ -open in X. Moreover we portray generalized fuzzy paracompactness of a fuzzy μ -space X via fuzzy μ -preopen sets in X.

Keywords and Phrases: Fuzzy μ -preopen set, fuzzy μ -dense, fuzzy μ -locally finite, fuzzy μ -paracompact.

2020 Mathematics Subject Classification: 54A05, 54D20.

1. Introduction

Chang [3] presented fuzzy topology after the discovery of fuzzy sets by Zadeh [14]. The notion of generalized topology proposed by Csaszar in [6]. Let I^X denotes non empty set X. A fuzzy subcollection μ of I^X is called a generalized fuzzy topology [4] on X if $0_X \in \mu$ and $\bigvee \{\xi_{\alpha}\alpha \in \Delta\} \in \mu$ whenever $\xi_{\alpha} \in \Delta$ for every $\alpha \in \mu$. The terms FS, F μ -O,F μ -PO and GFTS stands for fuzzy set, fuzzy μ -open, fuzzy μ -preopen and generalized fuzzy topological space respectively. A fuzzy set $\xi \in \mu$ is called fuzzy μ -open [4] of (X, μ) . The complement of fuzzy μ -open set

is called fuzzy μ -closed of (X, μ) . A FS λ of X, the intersection of all fuzzy μ -closed sets containing λ is the generalized fuzzy closure of λ and is denoted by $c_{\mu}(\xi)$. Also for a fuzzy set ξ of X, the union of all fuzzy μ -open sets contained in ξ is the generalized fuzzy interior of ξ and is denoted by $i_{\mu}(\xi)$. For our better understanding, a FS ξ of X is μ -open (resp. fuzzy μ -closed) if and only if $\xi = i_{\mu}(\xi)$ (resp. fuzzy $\xi = c_{\mu}(\xi)$). Also for a FS ξ of X, we have $c_{\mu}(\xi) = 1_{X} - i_{\mu}(\xi)$ [4].

A fuzzy set ξ of X is called fuzzy μ -preopen [5] if $\xi \subset i_{\mu}(c_{\mu}(\xi))$. The complement of a fuzzy μ -preopen set is called fuzzy μ -preclosed. Hence a FS ξ of X is fuzzy μ -preclosed if $c_{\mu}(i_{\mu}(\xi)) \subset \xi$. Analogouly a FS ξ of X is fuzzy μ -preopen iff there exists a fuzzy μ -open set β such that $\xi \subset \beta \subset c_{\mu}(\xi)$. Related this paper recent studies have been found in [1], [2], [9] and [11]. Swaminathan and Sheela [13] explored a covering property namely fuzzy μ -precompactness via fuzzy μ -preopen sets. In this article, we obtain some more properties of fuzzy μ -preopen sets on GFTS or fuzzy μ -spaces.

2. Fuzzy μ -preopen Sets

We now introduce the main results:

Definition 2.1. A FS γ of X is said to be fuzzy μ -dense if $c_{\mu}(\gamma) = 1_X$.

Every $F\mu$ -O sets in X are $F\mu$ -PO in X but the converse need not be true. This will lead us to know that when $F\mu$ -PO sets in X may be $F\mu$ -O in X. In light of this, we shall first instigate the following.

Definition 2.2. A GFTS or fuzzy μ -space X is said to be a fuzzy μ -door space if every fuzzy subset of X is either $F\mu$ -O or fuzzy μ -closed.

Theorem 2.1. Each $F\mu$ -PO set of a fuzzy μ -door space is $F\mu$ -O.

Proof. Let ξ be a F μ -PO set of a fuzzy μ -door space X. Now $\xi \subset i_{\mu}(c_{\mu}(\xi))$. Suppose ξ is not F μ -O, then it is fuzzy μ -closed. Then $c_{\mu}(\xi) = \xi$ gives $i_{\mu}(c_{\mu}(\xi)) = i_{\mu}(\xi)$. By the definition, $i_{\mu}(\xi) = i_{\mu}(c_{\mu}(\xi)) \subset \xi$. Since ξ is not F μ -O, $i_{\mu}(\xi) = i_{\mu}(c_{\mu}(\xi)) \subsetneq \xi$ which constitutes a contradiction that $\xi \subset i_{\mu}(\xi) = i_{\mu}(c_{\mu}(\xi))$.

Theorem 2.2. Each singleton in X is either $F\mu$ -O or fuzzy μ -closed if each $F\mu$ -PO set of X is $F\mu$ -O.

Proof. Assume that for $x_{\alpha} \in X$, $\{x_{\alpha}\}$ is not fuzzy μ -closed. Then for each $F\mu$ -PO set in X is $F\mu$ -O, $\{x_{\alpha}\}$ is not fuzzy μ -preclosed and so

$$c_{\mu}(i_{\mu}(\{x_{\alpha}\})) \nsubseteq \{x_{\alpha}\}. \tag{2.1}$$

Case i: $\{x_{\alpha}\}$ is F μ -O. Then $c_{\mu}(i_{\mu}(\{x_{\alpha}\})) = c_{\mu}(\{x_{\alpha}\})$ which contradicts (2.1). Case ii. $\{x_{\alpha}\}$ is not F μ -O. Then $c_{\mu}(i_{\mu}(\{x_{\alpha}\})) = c_{\mu}(0_X) = 0_X$ which contradicts (2.1).

Therefore $\{x_{\alpha}\}$ is $F\mu$ -O.

Remark 2.3. In a GFTS, Theorem 2.2 may not be true since in a GFTS, X may not be $F\mu$ -O and 0_X may not be fuzzy μ -closed, This follows from the following Example.

Example 2.4. Let $X=\{a,b,c,d\}$. Then $\gamma_1=\frac{0}{a}+\frac{0}{b}+\frac{1}{c}+\frac{0}{d}$ and $\gamma_2=\frac{0}{a}+\frac{1}{b}+\frac{1}{c}+\frac{0}{d}$ are two fuzzy sets: Let $\mu=\{0_X,\gamma_1,\gamma_2\}$ be a generalized fuzzy topology. Now each F μ -PO set is F μ -O but $\gamma_3=\frac{1}{a}+\frac{0}{b}+\frac{0}{c}+\frac{0}{d}$ is neither F μ -O nor fuzzy μ -closed.

Theorem 2.5. Each fuzzy μ -dense set in X is $F\mu$ -O if each $F\mu$ -PO set in X is $F\mu$ -O.

Proof. Let λ be fuzzy μ -dense in X. Then $i_{\mu}(c_{\mu}(\lambda)) = 1_X$, as X is $F\mu$ -O in X. Clearly $\lambda \subset i_{\mu}(c_{\mu}(\lambda))$. Hence λ is $F\mu$ -PO. From assumption, we conclude that λ is $F\mu$ -O.

In Example 2.4, each F μ -PO set (F, μ) is F μ -O and $\gamma_4 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c} + \frac{1}{d}$ is fuzzy μ -dense. But γ_4 is not F μ -O in X. So we deduce that Theorem 2.5 need not be true in a GFTS.

A FS λ in a GFTS X is purely F μ -PO if λ is F μ -PO but not F μ -O. Hence if λ is purely F μ -PO in X, then $\lambda \neq 0_X, 1_X$. It follows that X is fuzzy μ -dense in a GFTS.

Theorem 2.6. There exists a fuzzy μ -dense set other than X in a GFTS X if X contains a purely $F\mu$ -PO set.

Proof. Consider a F μ -PO set λ in a GFTS X. Now $\lambda \subset i_{\mu}(c_{\mu}(\lambda)) \subset c_{\mu}(\lambda)$. If $c_{\mu}(\lambda) \neq 1_X$, then $\lambda \neq 1_X$ is fuzzy μ -dense in X. If $c_{\mu}(\lambda) \neq 1_X$, replace $\beta = i_{\mu}(c_{\mu}(\lambda))$. Observe that $\beta \neq 1_X$ and $c_{\mu}(\lambda) = c_{\mu}(\beta)$. Now

$$c_{\mu}((1_X - \beta) \cup \lambda) \supset c_{\mu}(1_X - \beta) \cup c_{\mu}(\lambda) = (1_X - \beta) \cup c_{\mu}(\beta) \supset (1_X - \beta) \cup \beta = 1_X.$$

Therefore we have $c_{\mu}((1_X - \beta) \cup \lambda) = 1_X$. Since λ is purely $F\mu$ -PO and $\lambda \subset \beta, \beta - \lambda \neq 0_X$. Consequently, it can be inferred that $(1_X - \beta) \cup \lambda \neq 1_X$. Therefore we get $(1_X - \beta) \cup \lambda \neq 1_X$ is fuzzy μ -dense in X.

Corollary 2.7. Let λ be $F\mu$ -PO in a GFTS X and there exist $\beta \subset X$ such that $\lambda \subset \beta \subset c_{\mu}(\lambda)$. Then $(1_X - \beta) \cup \lambda$ is fuzzy μ -dense in X.

Proof. Analogous to that of Theorem 2.6.

Theorem 2.8. Each FS in GFTS X is $F\mu$ -PO iff each $F\mu$ -O set in X is fuzzy μ -closed.

Proof. Consider each FS of X is F μ -PO and ζ is F μ -O in X. So $1_X - \zeta$ is fuzzy

 μ -closed. By assumption, $c_{\mu}(1_X - \zeta)$ is $F\mu$ -PO, we have

$$c_{\mu}(1_X - \zeta) \subset i_{\mu}(c_{\mu}(c_{\mu}(1_X - \zeta))) = i_{\mu}(c_{\mu}(1_X - \zeta)) \text{ since } 1_X - \zeta = c_{\mu}(1_X - \zeta) = i_{\mu}(1_X - \zeta).$$

So, we see that $1_X - \zeta = c_{\mu}(1_X - \zeta) \subset i_{\mu}(1_X - \zeta)$. By the definition, $i_{\mu}(1_X - \zeta) \subset 1_X - \zeta$.

Thus, we have $1_X - \zeta = i_\mu (1_X - \zeta)$ and which implies $1_X - \zeta$ is F μ -O and hence ζ is fuzzy μ -closed.

Conversely, let each F μ -O set in X is fuzzy μ -closed and λ be any fuzzy subset of X. Then $1_X - c_{\mu}(\lambda)$ is F μ -O and also fuzzy μ -closed. Hence $1_X - c_{\mu}(\lambda) = c_{\mu}(1_X - c_{\mu}(\lambda)) = 1_X - i_{\mu}(c_{\mu}(\lambda))$ which implies $c_{\mu}(\lambda) = i_{\mu}(c_{\mu}(\lambda))$. Therefore $\lambda \subset c_{\mu}(\lambda) = i_{\mu}(c_{\mu}(\lambda))$. Thus λ is F μ -PO.

Theorem 2.9. Each subset $\lambda(\neq 0_X, 1_X)$ of GFTS X is $F\mu$ -PO iff each $F\mu$ -O set $\zeta(\neq 0_X, 1_X)$ in X is fuzzy μ -closed.

Proof. Analogous to that of Theorem 2.8.

3. Fuzzy Generalized Paracompactness via Fuzzy μ -preopen Sets

A F μ -O cover of X is defined to be the collection \mathcal{M} of F μ -O sets of X such that $\bigcup_{M \in \mathcal{M}} M = 1_X$. Now in GFTS, X may not be F μ -O and so even the union of all F μ -O sets of X may not be equal to 1_X . Now definition of F μ -O covers become invalid. In order to avoid such invalidity, we extend the existing ideas of covering properties in GT spaces slightly.

Assume that $X_{\mu} = \bigcup_{V \in \mu} V$. Obviously, X_{μ} is F_{μ} -O. If X is a GFTS with $X \notin \mu$,

then X_{μ} is not fuzzy μ -closed. Emphasize in the event of fuzzy μ -spaces, $X_{\mu} = 1_X$. A collection \mathscr{M} of fuzzy subsets of X is called a fuzzy cover of X if $\bigcup_{V \in \mathscr{M}} V = X_{\mu}$.

We write 'F μ -O collection of X'and 'F μ -PO collection of X to mean a collection consisting F μ -O sets and F μ -PO sets respectively of X. A F μ -O collection (resp. F μ -PO collection) \mathcal{M} of X is said to be a F μ -O (resp. F μ -PO) cover of X if $\bigcup_{V \in \mathcal{M}} V = X_{\mu}$.

Definition 3.1. [10] A fuzzy cover \mathscr{A} of X is a fuzzy refinement of the fuzzy cover \mathscr{B} of X if $\forall \alpha \in \mathscr{A}$, $\exists \beta \in \mathscr{A}$ such that $\alpha < \beta$.

Definition 3.2. [10] A collection \mathscr{G} of fuzzy subsets of X is called fuzzy locally finite if for each $x_{\alpha} \in X$ there exists a fuzzy open set δ with $x_{\alpha} \in \delta$ meeting only finitely many members of \mathscr{G} .

However, if \mathscr{H} is a F μ -PO cover and \mathscr{G} is a F μ -O cover of X, then \mathscr{H} is called a F μ -PO refinement of \mathscr{G} .

Definition 3.3. [12] Let \mathscr{A} and \mathscr{B} be two fuzzy covers of a GFTS X. \mathscr{A} is said to be a fuzzy s-refinement of \mathscr{B} if for each $A \in \mathscr{A}$ there is a $B \in \mathscr{B}$ such that $A \subsetneq B$. An s-refinement \mathscr{A} of \mathscr{B} is said to be a fuzzy open s-refinement of \mathscr{B} if all members of \mathscr{B} are fuzzy open.

Definition 3.4. A collection \mathscr{G} of fuzzy subsets of X is called fuzzy μ -locally finite if for each $x_{\alpha} \in X_{\mu}$, there exists a $F\mu$ -O set δ with $x_{\alpha} \in \delta$ meeting only finitely many members of \mathscr{G} .

Definition 3.5. A space X is called a fuzzy μ -paracompact space if each $F\mu$ -O cover of X has a fuzzy μ -locally finite $F\mu$ -O refinement.

Definition 3.6. A $F\mu$ -PO set β in a space X is said to be capped by a $F\mu$ -O set if $\beta \subset \delta$ and $\beta \subset \eta$ for $F\mu$ -O sets δ, η in X, then there exists a $F\mu$ -O set γ such that $\beta \subset \gamma \subset \delta \cap \eta$.

Example 3.1. Let $U = [0, +\infty)$ and for each $x \in U$.

Let
$$\Omega_x(y) = \begin{cases} e^{-y} & \text{if } 0 < y < x \\ 0 & \text{if } y \ge x, \end{cases}$$

$$\Omega_{\infty}(y) = e^{-y}, \forall y \in U,$$

$$\mu = \{0, \Omega_{\infty}\} \cup \{\Omega_x, \forall x \in U\},$$

then it can be easily verified that (X, μ) is a GFTS. It is observed that $F\mu$ -PO sets are always contained in a $F\mu$ -O set. Consider two fuzzy sets

$$\Omega_{w}(y) = \begin{cases} e^{-w} & if \quad 0 < w < y < x, \\ 0 & if \quad y \ge x, \end{cases} \quad \Omega_{z}(y) = \begin{cases} e^{-z} & if \quad 0 < w < z <, y < x, \\ 0 & if \quad y \ge x. \end{cases}$$

If a F μ -PO set $\Omega_k(y)$, $\forall k \in U$ is contained in the F μ -O sets $\Omega_w(y)$, $\Omega_z(y)$, then $\Omega_k(y)$ is capped by the F μ -O set $\Omega_z(y)$. Therefore it is clear that all F μ -PO sets in X are capped by a F μ -O set in X.

Theorem 3.2. If a $F\mu$ -PO collection $\mathscr{M} = \{M_{\beta} | \alpha \in \Delta\}$ of X is fuzzy μ -locally finite, then there exists a $F\mu$ -O collection $\mathscr{G} = \{G_{\alpha} | M_{\beta} \subset G_{\alpha}, \alpha \in \Delta\}$ such that \mathscr{G} and $\mathscr{H} = \{c_{\mu}(G) | G \in \mathscr{G}\}$ both are fuzzy μ -locally finite.

Then if \mathcal{M} is a fuzzy cover of X, then \mathcal{G} and \mathcal{H} both are also fuzzy covers of 1_X .

Proof. The collection \mathcal{M} of F μ -PO sets is fuzzy μ -locally finite. Then for each

 $x_{\alpha} \in X_{\mu}$, there exists a $F\mu$ -O set $N_{x_{\alpha}}$ such that $M_{\beta} \cap N_{x_{\alpha}} \neq 0_X$ for finitely many $\beta \in \Delta$. Let $M_{\beta_k} \cap N_{x_{\alpha}} \neq 0_X$ for $\beta_k \in \Delta, k \in \{1, 2, \cdots, n\}, n \in \mathbb{N}$. Then $M_{\beta} \cap N_{x_{\alpha}} = 0_X$ for $\beta \in \Delta - \{\beta_1, \beta_2, \cdots, \beta_n\}$ which implies $c_{\mu}(M_{\beta}) \cap N_{x_{\alpha}} = 0_X$ for $\beta \in \Delta - \{\beta_1, \beta_2, \cdots, \beta_n\}$. Now for each $\beta \in \Delta$, there exists a $F\mu$ -O set G_{β} such that $M_{\beta} \subset G_{\beta} \subset c_{\mu}(M_{\beta})$. It gives $c_{\mu}(M_{\beta}) = c_{\mu}(G_{\beta})$. So $c_{\mu}(G_{\beta}) \cap N_{x_{\alpha}} = 0_X$ for $\beta \in \Delta - \{\beta_1, \beta_2, \cdots, \beta_n\}$. Hence we see that $N_{x_{\alpha}}$ may intersect only finitely many members of $\mathscr{H} = \{c_{\mu}(G_{\alpha}) | \alpha \in \Delta\}$. Thus \mathscr{H} is fuzzy μ -locally finite.

Since for each $\alpha \in \Delta$, $G_{\alpha} \subset c_{\mu}(G_{\alpha})$ and the collection $\mathscr{H} = \{c_{\mu}(G_{\alpha}) | \alpha \in \Delta\}$ is fuzzy μ -locally finite, the collection $\{G_{\alpha} | \alpha \in \Delta\}$ is also fuzzy μ -locally finite.

Consider \mathscr{M} is a fuzzy cover of X. Then for each $x_{\alpha} \in X_{\mu}$, there exists a $M_{\beta} \in \mathscr{M}$ such that $x_{\alpha} \in M_{\beta}$. Hence $x_{\alpha} \in M_{\beta} \subset G_{\alpha} \subset c_{\mu}(M_{\beta}) = c_{\mu}(G_{\alpha})$. Hence it follows that \mathscr{G} and \mathscr{H} both are fuzzy covers of X.

Theorem 3.3. Let $F\mu$ -PO sets are capped by $F\mu$ -O sets in X. Then the fuzzy space X is fuzzy μ -paracompact if and only if each $F\mu$ -O covers of X has a fuzzy μ -locally finite $F\mu$ -PO refinement.

Proof. Since $F\mu$ -O sets on a space X are also $F\mu$ -PO in X. Necessity holds. To prove the sufficiency, let $\mathscr{M}=\{M_{\alpha}|\alpha\in\Delta\}$ be a $F\mu$ -O cover of X and $\mathscr{H}=\{S_{\beta}|\ \beta\in\Gamma\}$ be a fuzzy μ -locally finite μ -preopen refinement of \mathscr{M} . By Theorem 3.2, there exists a fuzzy μ -locally finite $F\mu$ -O cover $\mathscr{G}=\{G_{\beta}|G_{\beta}\subset S_{\beta},\in\Gamma\}$ and for each $x_{\alpha}\in X_{\mu}$, there exists a $\beta(x_{\alpha})\in\Gamma$ such that $x_{\alpha}\in S_{\beta(x_{\alpha})}\subset U_{\beta(x_{\alpha})}$. But for $\beta(x_{\alpha})\in\Gamma$, there is a $\gamma(x_{\alpha})\in\Delta$ such that $x_{\alpha}\in S_{\beta(x_{\alpha})}\subset M_{\lambda(x_{\alpha})}$. Since $F\mu$ -PO sets in X are capped by $F\mu$ -O sets, there exists a $F\mu$ -O set $Q_{x_{\alpha}}$ such that $x_{\alpha}\in S_{\beta(x_{\alpha})}\subset Q_{x_{\alpha}}\subset G_{\beta(x_{\alpha})}\cap M_{\lambda(x_{\alpha})}\subset M_{\lambda(x_{\alpha})}$. So $\mathscr{Q}=\{Q_{x_{\alpha}}|x_{\alpha}\in X_{\mu}\}$ is a $F\mu$ -O refinement of \mathscr{M} . Since \mathscr{G} is fuzzy μ -locally finite and observe that $Q_{x_{\alpha}}\subset G_{\beta(x_{\alpha})}, \mathscr{Q}$ is also fuzzy μ -locally finite. Hence we get a fuzzy μ -locally finite $F\mu$ -O refinement $\mathscr{Q}=\{Q_{x_{\alpha}}|x_{\alpha}\in X_{\mu}\}$ of \mathscr{M} . Therefore X is fuzzy μ -paracompact.

4. Conclusion

In this paper we have studied and investigated fuzzy μ -preopen sets of a GFTS or fuzzy μ -space X and which may be equivalent to fuzzy μ -open in X. Further we extended our results to covering properties that is generalized fuzzy paracompactness of a fuzzy μ -space X via fuzzy μ -preopen sets in X. The notions of ideas can further be investigated in various covering and connectedness as well as in many topological properties of the literature.

References

[1] Basumatary A. A., Sarma D. J. and Tripathy B. C., Almost M-precontinuous functions in biminimal structure spaces, Jordan Journal of Mathematics and Statistics, 14(4), (2021), 691-706.

- [2] Basumatary A. A., Sarma D. J. and Tripathy B. C., Preopen sets and prelocally closed sets in generalised topology and minimal structure spaces, Acta Universitatis Sapientiae, Mathematica, 14(1), (2022), 23-36.
- [3] Chang C. L., Fuzzy topological spaces, Math. Anal. Appl., 24 (1968), 182-190.
- [4] Chetty G. P., Generalized Fuzzy Topology, Italian Journal of Pure and Applied Mathematics, 24, (2008), 91-96.
- [5] Chetty G. P., Contribution to the study on some aspects of fuzzy c compactness in fuzzy topological spaces, Ph.D. Thesis, Periyar University, India, 2007.
- [6] Császár Á., Generalized open sets in generalized topologies, Acta Math. Hungar., 106(1-2) (2005), 351-357.
- [7] Császár Á., Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 47 (2004), 91-96.
- [8] Császár Á., Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.
- [9] Das S., Das R., Tripathy B. C., Neutrosophic pre-I-open set in neutrosophic ideal bitopological space, Soft Computing, 26 (12), (2022), 5457-5464.
- [10] Malghan S. R. and Benchalli S. S., On fuzzy topological spaces, Glasnik Mat., 16 (36), (1981), 313-325.
- [11] Singh M., Gupta A., Tripathy B. C., Covering properties and product spaces of bipolar fuzzy topology, Applied Sciences, 24 (2022), 261-269.
- [12] Swaminathan A. and Sivaraja S., Fuzzy compactness, fuzzy regularity via fuzzy maximal open and fuzzy minimal closed sets, J. Appl. Math. and Informatics, 40 (2022), 185-190.
- [13] Swaminathan A. and Margaret Sheela, A covering property with respect to fuzzy generalized preopen sets, Utilitas Mathematica, Vol. 122(1), (2025), 1953-1962.
- [14] Zadeh L. A., Fuzzy sets, Information and control, 8 (1965), 338-353.

This page intentionally left blank.